Arnaud Nougues - Math Tutoring

Trigonometry Primer

1. Introduction

Trigonometry is everywhere and used in many branches of science and technology: geography, astronomy, electrical engineering, architecture, etc...

The basic concepts are presented here, mostly in pictures and a few formulas. Also, there is a short test at the end !

2. Unit of measure of angles

Two types of units are used for angles: radians and degrees. This is important to master fully and be able to easily go from one set of units to the other.

Angle θ in radians $=$ length of the arc intercepted by the angle θ on the unit circle.
$\theta=2 \pi$ that corresponds to one full rotation on the unit circle, is the perimeter of the unit circle of radius of 1 (Perimeter $=2 \pi{ }^{*}$ Radius).

- $\pi / 2$ radians $\rightarrow 90^{\circ}$
- π radians $\rightarrow 180^{\circ}$
- 2π radians $\rightarrow 360^{\circ}$

Arnaud Nougues - Math Tutoring

3. Sinus and cosinus formulas

Considering the rectangle triangle below:

Sinus, cosinus and tangent formulas:

- $\operatorname{Sin}(\theta)=O / H \quad=$ Opposite / Hypotenuse
- $\operatorname{Cos}(\theta)=\mathrm{A} / \mathrm{H} \quad$ = Adjacent / Hypotenuse
- $\operatorname{Tg}(\theta)=\mathrm{O} / \mathrm{A}=$ Opposite / Adjacent

Helpful mnemonic: SOH-CAH-TOA

4. Trigonometric circle

The trigonometric circle is an important tool to work with angles, for a clear understanding of the relationship to the trigonometric functions and periodicity:

Arnaud Nougues - Math Tutoring

Notes:

- Point M coordinates: $x=\cos (\theta), y=\sin (\theta)$
- Equation of the unit cercle: $x^{2}+y^{2}=1$
- Special case of Pythagora: $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$

5. Trigonometric circle and Sinus function

How the trigonometric circle relates to the Sinus function graph:

Arnaud Nougues - Math Tutoring

Similar figure for the Cosinus function:

Arnaud Nougues - Math Tutoring

6. Test yourself

Can you identify the following trigonometric functions curves?

Arnaud Nougues - Math Tutoring

Solution:
Curve 1: - $\sin (x)$
Curve 2: $\cos (x-\pi / 4)$
Curve 3: $1.5 \cos (\mathrm{x} / 2)$

