Integration and Primitives Essentials

1. Introduction

Integrals together with derivatives are fundamental objects in Calculus; a very clear conceptual understanding of these is a must. This chapter summarizes the principles of integration and the link between integrals and primitives.

2. DEFINITE INTEGRAL - DEFINITION

Let f denote a continuous and positive function on an interval [a, b]. By definition the Definite Integral of f between a and b, denoted by $\int_{a}{ }^{b} f$ or $\int_{a} b$ $f(t) d t$, is the area between the f curve and the abscissa axis, delimited by a and b.

It is called a "definite" integral because of its dependence on the two given constants a and b.

The concept can be extended to a non-positive function, bearing in mind that areas in the negative portions of the function are negative.

3. INDEFINITE INTEGRAL or PRIMITIVE

The Indefinite Integral or Primitive is a generalization of the Definite Integral. It is a function (as opposed to a definite value) depending on a variable, say x, which replaces the constant value b.

Notation: $F(x)=\int_{a}{ }^{x} f$ also written as $\int_{a}{ }^{x} f(t) d t$

Arnaud Nougues - Math Tutoring

KEY PROPERTIES OF PRIMITIVES

- $F^{\prime}(x)=f(x)$: given that $F(x)=\int_{a}^{x} f$, then the derivative of F is f; the primitive can be looked at as the "inverse" of the derivative.
- If F is a primitive of f then F plus any constant is also a primitive of f, since the derivative of a constant is 0 ; so there is an infinite number of primitives of a given function f all differing by a constant term.
- $\int_{a}^{b} f=F(b)-F(a)$: formula to calculate a Definite Integral as the difference of the primitive at two given points b and a.

IN SUMMARY

Derivation

$F(x)=\int_{a}{ }^{x} f \quad f(x)=F^{\prime}(x)$
Primitive of f
Derivative of F

Integration between a and x

4. EXAMPLE APPLICATIONS

1- Direct calculation of $\int_{a}{ }^{b} f$ for a given function f
$\int_{a}^{b} f=F(b)-F(a)$ where F is the primitive of f.
It is then just a matter of identifying F given the function f, based on the knowledge of derivatives of common functions provided one of them is applicable.

Simple example:

- $f(x)=x$; find $\int_{a}{ }^{b} f=\int_{a}^{b} x$
- Derivative of x^{2} is $2 x$, therefore derivative of $x^{2} / 2$ is x
- Primitive de $f(x): F(x)=x^{2} / 2$
- $\int_{a}{ }^{b} f=b^{2} / 2-a^{2} / 2$

2- Integration by parts: a useful technique for finding the integral of a function when expressed as a product uv' where v^{\prime} is a derivative of which we know the primitive.

Formula: $\int u u^{\prime}=u v-\int u ' v$

Arnaud Nougues - Math Tutoring

Example 1: $\int \mathrm{x} \cos (\mathrm{x})$

- $\mathrm{u}=\mathrm{x} \quad \mathrm{v}^{\prime}=\cos (\mathrm{x})$
- $u^{\prime}=1 \quad v=\sin (x)$
- $\Rightarrow \int \mathrm{x} \cos (\mathrm{x})=\mathrm{x} \sin (\mathrm{x})-\int \sin (\mathrm{x})=\mathrm{x} \sin (\mathrm{x})+\cos (\mathrm{x})+$ constant

Example 2: $\int \mathrm{x} \ln (\mathrm{x})$

- $\mathrm{u}=\ln (\mathrm{x}) \quad \mathrm{v}^{\prime}=\mathrm{x}$
- $u^{\prime}=1 / x$
$\mathrm{v}=\mathrm{x}^{2} / 2$
- $\Rightarrow \int \mathrm{x} \ln (\mathrm{x})=\mathrm{x}^{2} \ln (\mathrm{x}) / 2-\int(1 / \mathrm{x})\left(\mathrm{x}^{2} / 2\right)=\mathrm{x}^{2} \ln (\mathrm{x}) / 2-\int \mathrm{x} / 2=\mathrm{x}^{2}$ $\ln (\mathrm{x}) / 2-\mathrm{x}^{2} / 4+$ constant

3- Integration by substitution: a useful technique for finding the integral of a function when expressed as a product of a composite function $g \circ f(x)=g$ $[f(x)]$ and of the derivative of f.

Formulae: $\int g[f(x)] f^{\prime}(x) d x=\int g(y) d y$ after substituting $f(x)$ for y and $f^{\prime}(x) d x$ for $d y$.

Example: $\int \sin (\sqrt{ } \mathrm{x}) / \sqrt{ } \mathrm{x} d \mathrm{x}$

- $y=\sqrt{ } x$
- $\quad d y=1 / 2 \sqrt{ } \quad d x$
- $\Rightarrow \int \sin (\sqrt{ } \mathrm{x}) / \sqrt{ } \mathrm{x} d \mathrm{x}=\int \sin (\mathrm{y}) *(2 \mathrm{dy})=2 \int \sin (\mathrm{y}) \mathrm{dy}=-2 \cos (\mathrm{y})=-2$ $\cos (\sqrt{x})+$ constant

